DenseNet: Implementing Efficient ConvNet Descriptor Pyramids
نویسندگان
چکیده
Convolutional Neural Networks (CNNs) can provide accurate object classification. They can be extended to perform object detection by iterating over dense or selected proposed object regions. However, the runtime of such detectors scales as the total number and/or area of regions to examine per image, and training such detectors may be prohibitively slow. However, for some CNN classifier topologies, it is possible to share significant work among overlapping regions to be classified. This paper presents DenseNet, an open source system that computes dense, multiscale features from the convolutional layers of a CNN based object classifier. Future work will involve training efficient object detectors with DenseNet feature descriptors.
منابع مشابه
Cooperative Training of Descriptor and Generator Networks
This paper studies the cooperative training of two probabilistic models of signals such as images. Both models are parametrized by convolutional neural networks (ConvNets). The first network is a descriptor network, which is an exponential family model or an energy-based model, whose feature statistics or energy function are defined by a bottom-up ConvNet, which maps the observed signal to the ...
متن کاملA Hybrid Approach to Wide-Baseline Image Matching
We propose a convolutional neural network (ConvNet) based approach for learning local image descriptors which can be used for significantly improved patch matching and 3D reconstructions. A multi-resolution ConvNet is used for learning keypoint descriptors. We also propose a new dataset consisting of an order of magnitude more number of scenes, images, and positive and negative correspondences ...
متن کاملScience Deep learning for person re - identification
Person re-identification is the task of ranking a gallery of automatically detected images of persons using a set of query images. This is challenging due to the different poses, viewpoints, occlusions, camera configurations, image distortions, lighting conditions, image resolutions and imperfect detections, which all affects a person re-identification system’s performance. Recently deeply lear...
متن کاملLog-DenseNet: How to Sparsify a DenseNet
Skip connections are increasingly utilized by deep neural networks to improve accuracy and cost-efficiency. In particular, the recent DenseNet is efficient in computation and parameters, and achieves state-of-the-art predictions by directly connecting each feature layer to all previous ones. However, DenseNet’s extreme connectivity pattern may hinder its scalability to high depths, and in appli...
متن کاملCompact, Adaptive and Discriminative Spatial Pyramid for Improved Scene and Object Classification
The release of challenging datasets with a vast number of images, requires the development of efficient image representations and algorithms which are able to manipulate these largescale datasets efficiently. Nowadays the Bag-of-Words (BoW) based image representation is the most successful approach in the context of object and scene classification tasks. However, its main drawback is the absenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1404.1869 شماره
صفحات -
تاریخ انتشار 2014